Main Content start here
Main Layout
Report Description

Report Description

Forecast Period

2025-2029

Market Size (2023)

USD 9.50 Billion

CAGR (2024-2029)

10.28%

Fastest Growing Segment

Structural Assembly

Largest Market

Asia Pacific

Market Size (2029)

USD 17.08 Billion

Market Overview

The Global Automotive Composite market was valued at USD 9.50 Billion in 2023 and is expected to reach USD 17.08 Billion by 2029 with a CAGR of 10.28% during the forecast period. The global automotive composite market is witnessing significant growth driven by the increasing demand for lightweight and high-performance materials to enhance vehicle efficiency and reduce emissions. The automotive industry’s shift towards electrification has accelerated the adoption of composites in electric vehicles (EVs) to optimize weight and improve battery performance. Structural applications such as chassis, body frames, and suspension components are seeing robust growth due to the superior strength-to-weight ratio of advanced composites like carbon fiber-reinforced polymers (CFRPs) and glass fiber-reinforced polymers (GFRPs). Stringent environmental regulations and fuel economy standards are further pushing manufacturers to replace traditional materials with composites, fostering innovation in the market.

Emerging trends in the automotive composite sector include the development of cost-effective manufacturing processes, such as resin transfer molding (RTM) and automated fiber placement, which enable mass production without compromising material properties. The rise of hybrid composites, combining different fiber types, offers tailored solutions for specific automotive applications. Lightweighting initiatives are driving innovation in both thermoset and thermoplastic composites, with a growing focus on recyclability to address end-of-life vehicle regulations. Opportunities abound in electric and autonomous vehicles, where the need for lightweight materials to extend range and support advanced sensor systems is critical.

Despite its rapid growth, the market faces challenges such as high production costs, complex manufacturing processes, and difficulties in recycling certain composite materials. The need for specialized equipment and expertise can increase operational expenses, posing barriers for small and medium-sized manufacturers. Concerns over the environmental impact of non-recyclable composites and limited supply of raw materials, such as carbon fibers, add to the challenges. However, ongoing research into sustainable materials and improvements in production efficiency are expected to mitigate these obstacles, paving the way for sustained market growth.

Market Drivers

Demand for Lightweight Materials

Automakers increasingly emphasize reducing vehicle weight to improve fuel efficiency and performance, especially in the context of tightening global emissions standards. Composites such as carbon fiber-reinforced polymers (CFRPs) and glass fiber-reinforced polymers (GFRPs) have emerged as ideal solutions due to their exceptional strength-to-weight ratios. Compared to metals like steel or aluminum, composites provide equivalent or superior structural integrity while being significantly lighter. This weight reduction translates to better acceleration, handling, and fuel economy, particularly crucial for electric vehicles (EVs) and hybrid vehicles. Automakers are also leveraging lightweight composites to counterbalance the added weight of modern safety features and infotainment systems. As the demand for more efficient and sustainable transportation grows, lightweight composites are becoming indispensable in vehicle design.

Growth of Electric Vehicles (EVs)

The transition to EVs has accelerated the adoption of advanced composites in automotive manufacturing. Lightweight materials are critical for improving EV range by reducing the overall weight of the vehicle and, consequently, the energy required to propel it. Beyond weight considerations, composites also contribute to thermal management in battery enclosures and structural components, addressing the unique design and safety challenges posed by EVs. Additionally, the use of composites enables the design of sleek, aerodynamic shapes that further enhance efficiency. As the global EV market expands, driven by consumer demand and government incentives, the integration of composites in EV production is expected to grow exponentially. For instance, as per the International Energy Agency report, In 2023, global electric car sales approached 14 million units, with 95% of these sales occurring in China, Europe, and the United States. The total number of electric vehicles registered worldwide reached 40 million, following the addition of nearly 14 million new electric cars in 2023. This figure represents an increase of 3.5 million units compared to 2022, marking a 35% rise year-on-year. This growth is more than sixfold compared to the sales figures from 2018, just five years prior.

Advancements in Manufacturing Technologies

Technological innovations in composite manufacturing have significantly improved the feasibility of mass production. Processes like resin transfer molding (RTM), automated fiber placement, and out-of-autoclave curing techniques allow manufacturers to produce high-quality components more efficiently. These advancements have reduced production costs and improved consistency in composite parts, encouraging their adoption across the automotive sector. As automation continues to optimize production lines, the scalability of composite manufacturing will expand, making these materials accessible for both luxury and mass-market vehicles.

       Download Free Sample Report

Key Market Challenges

High Production Costs

The cost of producing composites, particularly CFRPs, remains a significant barrier to widespread adoption. Carbon fibers, a primary component in many advanced composites, require energy-intensive production processes that drive up costs. Manufacturing composite parts often involves specialized equipment and skilled labor, which increases capital and operational expenses. This cost factor is especially problematic for manufacturers targeting the mass market, where affordability is critical. Efforts to develop cost-effective raw materials and processes are ongoing but have yet to fully address this challenge.

Recycling and Sustainability Issues

Despite their advantages, composites face challenges regarding end-of-life disposal and recycling. Thermoset composites, which are widely used for their rigidity and durability, are particularly difficult to recycle because they cannot be remelted or reshaped. This creates a waste management issue, especially as environmental regulations tighten. While thermoplastic composites offer better recyclability, their adoption is still limited due to their higher costs and performance trade-offs in certain applications. Finding sustainable solutions for recycling composites is crucial to ensuring their long-term viability.

Complex Manufacturing Processes

Producing composite materials and components often involves intricate processes that require advanced machinery and highly trained personnel. Techniques like resin infusion and curing are time-consuming and sensitive to errors, which can lead to higher rejection rates and production inefficiencies. For automakers accustomed to faster and more streamlined production cycles with metals, integrating composite manufacturing can disrupt workflows and increase costs. Simplifying and standardizing composite production techniques is essential to overcoming this hurdle.

Key Market Trends

Rise of Hybrid Composites

Hybrid composites, which combine different types of fibers or materials, are emerging as a solution to balance performance, cost, and application-specific requirements. For example, combining carbon and glass fibers can achieve a compromise between strength, weight, and affordability. Hybrid composites are being tailored to meet the diverse needs of automotive applications, such as impact resistance in bumpers or stiffness in suspension components. This trend reflects the industry’s focus on creating versatile materials for a wide range of vehicles.

Adoption in Electric and Autonomous Vehicles

The rise of electric and autonomous vehicles is driving the integration of lightweight composites. These materials help reduce battery loads and improve range in EVs while also supporting the structural integrity needed for advanced sensor systems in autonomous vehicles. Composites are being engineered to address specific challenges, such as shielding sensors from environmental interference and integrating seamlessly with electronic systems. This trend underscores the importance of composites in shaping the future of mobility.

Focus on Recyclable Composites

Thermoplastic composites and bio-based materials are gaining traction as sustainable alternatives to traditional thermosets. Thermoplastics can be reshaped and recycled, addressing key environmental concerns and aligning with regulatory pressures for sustainability. Bio-based composites, derived from renewable sources like natural fibers, offer an eco-friendly option without compromising performance. The development of these recyclable materials represents a significant step toward achieving a circular economy in automotive manufacturing. For instance, In 2024, as sustainability becomes increasingly important to consumers, Renault has opted to address this demand by equipping its new all-electric vehicle with low-CO2 materials sourced from Forvia (formerly known as Faurecia). These materials, which include NAFILean-R and Ecorium, feature recycled polypropylene (PP) and polyethylene terephthalate (PET), as well as natural components like hemp fiber. Developed in collaboration with recyclers Veolia and APM, and supplied by Materi’act, this innovative material achieves a 73% reduction in CO2 emissions and a 20% decrease in weight, all while adhering to rigorous standards for durability, crash safety, and cabin air quality.

Segmental Insights

Application Type Insights

The global automotive composite market is segmented by application type into structural assembly, powertrain components, interior, and exterior, each offering unique opportunities for integration and development. Structural assembly encompasses the use of composites in critical components like chassis, body frames, and suspension systems. These applications benefit from the strength-to-weight ratio of advanced composites, providing enhanced crash performance, rigidity, and lightweight benefits. The durability and corrosion resistance of materials like carbon fiber and glass fiber composites make them ideal for supporting structural integrity while improving vehicle dynamics and fuel efficiency.

Powertrain components represent a growing application area for composites due to their need for high thermal stability and wear resistance. Materials such as polymer matrix composites are used in engine covers, oil pans, and transmission systems to reduce weight without compromising performance. Composites in powertrain applications also contribute to noise, vibration, and harshness (NVH) reduction, enhancing overall vehicle refinement. In hybrid and electric vehicles, composites are increasingly utilized to optimize thermal management in battery housings and electric motor components, addressing efficiency and safety requirements.

Interior applications involve the use of composites in door panels, dashboards, and seat structures to improve aesthetics, comfort, and weight reduction. Natural fiber composites are gaining popularity for interiors due to their eco-friendly properties and ability to offer a premium finish. These materials contribute to sustainability goals while maintaining structural integrity and acoustic performance. The versatility of composites enables the design of complex geometries and seamless integration with electronic systems, enhancing the functionality and appeal of vehicle interiors.

Exterior applications leverage composites in components such as bumpers, fenders, and roofs to achieve aerodynamic efficiency and durability. These materials offer high resistance to environmental factors like corrosion and UV degradation, making them suitable for long-term use in demanding conditions. Sheet molding compounds (SMCs) and glass fiber composites are commonly used for exterior parts, offering design flexibility and impact resistance. Lightweight composite panels also play a role in improving vehicle range and fuel efficiency by reducing drag and overall weight. As automakers prioritize innovative designs and material efficiency, exterior applications of composites continue to evolve, supporting the aesthetic and functional demands of modern vehicles.

              Download Free Sample Report

Region Insights

In 2023, Asia-Pacific emerged as a dominant region in the global automotive composite market, driven by its well-established automotive manufacturing base and significant advancements in material innovation. The region’s robust automotive industry, coupled with a focus on lightweight and performance enhancement, has positioned it as a key consumer and producer of automotive composites. Nations like China, Japan, and India are at the forefront, leveraging their extensive production capabilities and skilled labor force to cater to both domestic and international markets. The high volume of vehicle production, particularly in passenger cars and commercial vehicles, has spurred the adoption of composites to meet efficiency, safety, and sustainability goals.

The growing presence of electric vehicle (EV) manufacturing in Asia-Pacific has further fueled the demand for advanced composites. These materials are critical in reducing vehicle weight, thereby enhancing battery efficiency and driving range—factors pivotal in the EV segment. Governments in the region have introduced supportive policies and incentives for EV adoption, which in turn drives the utilization of composites in structural and battery components. Additionally, increasing consumer awareness of fuel efficiency and environmental impact has encouraged automakers to incorporate lightweight composites into their designs.

Asia-Pacific’s strong emphasis on research and development has led to significant innovations in composite materials and manufacturing techniques. Countries in the region are investing in automation and cost-effective production methods, such as resin transfer molding (RTM) and thermoplastic processing, to meet the growing demand for high-quality automotive components. These technological advancements enable manufacturers to balance performance, cost, and sustainability, ensuring competitiveness in global markets. Furthermore, the availability of raw materials, including carbon fibers and resins, enhances the region's ability to support large-scale production.

The rise of middle-class populations and increasing vehicle ownership in emerging economies have also contributed to Asia-Pacific’s dominance in the automotive composite market. Consumers are demanding vehicles that offer a combination of performance, affordability, and sustainability, prompting automakers to adopt advanced materials. Moreover, stricter government regulations on fuel emissions and efficiency standards are driving the adoption of lightweight composites to achieve compliance without compromising performance. With its strong industrial base, innovative material solutions, and increasing focus on sustainability, Asia-Pacific continues to lead the global automotive composite market in 2023.

Recent Developments

  • In 2024, Hyundai Motor Group entered into a strategic cooperation agreement with Toray Industries Inc., This partnership aims to enhance the development of lightweight and high-strength materials intended for environmentally sustainable and high-performance vehicles. The collaborative research and development efforts will focus on carbon fiber-reinforced polymer (CFRP) components, which are anticipated to enhance the performance of electric vehicle (EV) batteries and motors.
  • At JEC World 2023, Toray Advanced Composites showcased innovations including a spoiler panel from the Airbus Wing of Tomorrow, made by FACC with Toray Cetex® TC1225 LMPAEK thermoplastic tape featuring lightning strike protection. They also presented a linerless Liquid Oxygen (LOX) tank for the HyImpulse space launch vehicle, created by Adamant Composites using Toray's thermoset materials. Additionally, Toray highlighted its AmberTool® composite tooling prepregs, known for high quality and durability. The new HX56 and HX42 systems provide robust 990gsm reinforcement for efficient, cost-effective production of carbon composite tools suitable for aerospace and high-performance automotive applications.
  • In 2023, an innovative 3D printing technique has been established for the creation of bio-based composite materials. The German Institutes of Textile and Fiber Research (DITF) in Denkendorf, in collaboration with Arburg GmbH + Co KG based in Loßburg, Germany, have developed a process that is both energy-efficient and material-efficient for producing sustainable, bio-based fiber-reinforced composites. The outcome of the research conducted by DITF and Arburg is the production of 3D-printed fiber composite components, which feature continuous cellulose fibers embedded within a cellulose-based matrix.

Key Market Players

  • Toray Industries, Inc.
  • SGL Carbon
  • Hexcel Corporation
  • Mitsubishi Chemical Carbon Fiber and Composites, Inc.
  • mouldCAM Pty Ltd.
  • Nippon Sheet Glass Co., Ltd
  • Sigmatex
  • Solvay
  • Magna International Inc.
  • Plasan Sasa Ltd.

By Application Type

By Material Type

 

 

By Region

 

  • Structural Assembly Powertrain Component
  • Interior
  • Exterior
  • Thermoset Polymer
  • Thermoplastic Polymer
  • Carbon Fiber
  • Glass Fiber
  • North America
  • Europe & CIS
  • Asia-Pacific
  • Middle East & Africa
  • South America

 

 

Report Scope:

In this report, the Global Automotive Composite market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

·         Global Automotive Composite Market, By Application Type:

o   Kinetic Structural Assembly

o   Powertrain Component

o   Interior

o   Exterior

·         Global Automotive Composite Market, By Material Type:

o   Thermoset Polymer

o   Thermoplastic Polymer

o   Carbon Fiber

o   Glass Fiber

·         Global Automotive Composite Market, By Region:

o   North America

§  United States

§  Canada

§  Mexico

o   Europe & CIS

§  France

§  Germany

§  Spain

§  Italy

§  United Kingdom

§  Rest of Europe

o   Asia-Pacific

§  China

§  Japan

§  India

§  Vietnam

§  South Korea

§  Thailand

§  Australia

§  Thailand

o   Middle East & Africa

§  South Africa

§  Saudi Arabia

§  UAE

§  Turkey

o   South America

§  Brazil

§  Argentina

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Composite Market.

Available Customizations:

Global Automotive Composite Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Global Automotive Composite Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]
Table of content

Table of content

1.    Introduction

1.1.  Market Overview

1.2.  Key Highlights of the Report

1.3.  Market Coverage

1.4.  Market Segments Covered

1.5.  Research Tenure Considered

2.    Research Methodology

2.1.  Objective of the Study

2.2.  Baseline Methodology

2.3.  Key Industry Partners

2.4.  Major Association and Secondary Sources

2.5.  Forecasting Methodology

2.6.  Data Triangulation & Validation

2.7.  Assumptions and Limitations

3.    Executive Summary      

3.1.  Market Overview

3.2.  Market Forecast

3.3.  Key Regions

3.4.  Key Segments

4.    Voice of Customer

4.1.  Factors Influencing Purchase Decision

4.2.  Sources of Information

5.    Global Automotive Composite Market Outlook

5.1.  Market Size & Forecast

5.1.1.    By Value & Volume

5.2.  Market Share & Forecast

5.2.1.    By Application Type Market Share Analysis (Structural Assembly, Powertrain Component, Interior, Exterior)

5.2.2.    By Material Type Market Share Analysis (Thermoset Polymer, Thermoplastic Polymer, Carbon Fiber, and Glass Fiber)

5.2.3.    By Regional Market Share Analysis

5.2.3.1.        North America Market Share Analysis

5.2.3.2.        Europe & CIS Market Share Analysis

5.2.3.3.        Asia-Pacific Market Share Analysis

5.2.3.4.        Middle East & Africa Market Share Analysis

5.2.3.5.        South America Market Share Analysis

5.2.4.    By Top 5 Companies Market Share Analysis, Others (2023)

5.3.  Global Automotive Composite Market Mapping & Opportunity Assessment

5.3.1.    By Application Type Market Mapping & Opportunity Assessment

5.3.2.    By Material Type Market Mapping & Opportunity Assessment

5.3.3.    By Regional Market Mapping & Opportunity Assessment

6.    North America Automotive Composite Market Outlook

6.1.  Market Size & Forecast

6.1.1.    By Value & Volume

6.2.  Market Share & Forecast

6.2.1.    By Application Type Market Share Analysis

6.2.2.    By Material Type Market Share Analysis

6.2.3.    By Region Market Share Analysis

6.2.3.1.        United States Automotive Composite Market Outlook

6.2.3.1.1.           Market Size & Forecast

6.2.3.1.1.1.               By Value & Volume

6.2.3.1.2.           Market Share & Forecast

6.2.3.1.2.1.               By Application Type Market Share Analysis

6.2.3.1.2.2.               By Material Type Market Share Analysis

6.2.3.2.        Canada Automotive Composite Market Outlook

6.2.3.2.1.           Market Size & Forecast

6.2.3.2.1.1.               By Value & Volume

6.2.3.2.2.           Market Share & Forecast

6.2.3.2.2.1.               By Application Type Market Share Analysis

6.2.3.2.2.2.               By Material Type Market Share Analysis

6.2.3.3.        Mexico Automotive Composite Market Outlook

6.2.3.3.1.           Market Size & Forecast

6.2.3.3.1.1.               By Value & Volume

6.2.3.3.2.           Market Share & Forecast

6.2.3.3.2.1.               By Application Type Market Share Analysis

6.2.3.3.2.2.               By Material Type Market Share Analysis

7.    Europe & CIS Automotive Composite Market Outlook

7.1.  Market Size & Forecast       

7.1.1.    By Value & Volume

7.2.  Market Share & Forecast

7.2.1.    By Application Type Market Share Analysis

7.2.2.    By Material Type Market Share Analysis

7.2.3.    By Region Market Share Analysis

7.2.3.1.        France Automotive Composite Market Outlook

7.2.3.1.1.           Market Size & Forecast

7.2.3.1.1.1.               By Value & Volume

7.2.3.1.2.           Market Share & Forecast

7.2.3.1.2.1.               By Application Type Market Share Analysis

7.2.3.1.2.2.               By Material Type Market Share Analysis

7.2.3.2.        Germany Automotive Composite Market Outlook

7.2.3.2.1.           Market Size & Forecast

7.2.3.2.1.1.               By Value & Volume

7.2.3.2.2.           Market Share & Forecast

7.2.3.2.2.1.               By Application Type Market Share Analysis

7.2.3.2.2.2.               By Material Type Market Share Analysis

7.2.3.3.        Spain Automotive Composite Market Outlook

7.2.3.3.1.           Market Size & Forecast

7.2.3.3.1.1.               By Value & Volume

7.2.3.3.2.           Market Share & Forecast

7.2.3.3.2.1.               By Application Type Market Share Analysis

7.2.3.3.2.2.               By Material Type Market Share Analysis

7.2.3.4.        Italy Automotive Composite Market Outlook

7.2.3.4.1.           Market Size & Forecast

7.2.3.4.1.1.               By Value & Volume

7.2.3.4.2.           Market Share & Forecast

7.2.3.4.2.1.               By Application Type Market Share Analysis

7.2.3.4.2.2.               By Material Type Market Share Analysis

7.2.3.5.        United Kingdom Automotive Composite Market Outlook

7.2.3.5.1.           Market Size & Forecast

7.2.3.5.1.1.               By Value & Volume

7.2.3.5.2.           Market Share & Forecast

7.2.3.5.2.1.               By Application Type Market Share Analysis

7.2.3.5.2.2.               By Material Type Market Share Analysis

8.    Asia-Pacific Automotive Composite Market Outlook

8.1.  Market Size & Forecast       

8.1.1.    By Value & Volume

8.2.  Market Share & Forecast

8.2.1.    By Application Type Market Share Analysis

8.2.2.    By Material Type Market Share Analysis

8.2.3.    By Region Market Share Analysis

8.2.3.1.        China Automotive Composite Market Outlook

8.2.3.1.1.           Market Size & Forecast

8.2.3.1.1.1.               By Value & Volume

8.2.3.1.2.           Market Share & Forecast

8.2.3.1.2.1.               By Application Type Market Share Analysis

8.2.3.1.2.2.               By Material Type Market Share Analysis

8.2.3.2.        Japan Automotive Composite Market Outlook

8.2.3.2.1.           Market Size & Forecast

8.2.3.2.1.1.               By Value & Volume

8.2.3.2.2.           Market Share & Forecast

8.2.3.2.2.1.               By Application Type Market Share Analysis

8.2.3.2.2.2.               By Material Type Market Share Analysis

8.2.3.3.        India Automotive Composite Market Outlook

8.2.3.3.1.           Market Size & Forecast

8.2.3.3.1.1.               By Value & Volume

8.2.3.3.2.           Market Share & Forecast

8.2.3.3.2.1.               By Application Type Market Share Analysis

8.2.3.3.2.2.               By Material Type Market Share Analysis

8.2.3.4.        Vietnam Automotive Composite Market Outlook

8.2.3.4.1.           Market Size & Forecast

8.2.3.4.1.1.               By Value & Volume

8.2.3.4.2.           Market Share & Forecast

8.2.3.4.2.1.               By Application Type Market Share Analysis

8.2.3.4.2.2.               By Material Type Market Share Analysis

8.2.3.5.        South Korea Automotive Composite Market Outlook

8.2.3.5.1.           Market Size & Forecast

8.2.3.5.1.1.               By Value & Volume

8.2.3.5.2.           Market Share & Forecast

8.2.3.5.2.1.               By Application Type Market Share Analysis

8.2.3.5.2.2.               By Material Type Market Share Analysis

8.2.3.6.        Australia Automotive Composite Market Outlook

8.2.3.6.1.           Market Size & Forecast

8.2.3.6.1.1.               By Value & Volume

8.2.3.6.2.           Market Share & Forecast

8.2.3.6.2.1.               By Application Type Market Share Analysis

8.2.3.6.2.2.               By Material Type Market Share Analysis

8.2.3.7.        Thailand Automotive Composite Market Outlook

8.2.3.7.1.           Market Size & Forecast

8.2.3.7.1.1.               By Value & Volume

8.2.3.7.2.           Market Share & Forecast

8.2.3.7.2.1.               By Application Type Market Share Analysis

8.2.3.7.2.2.               By Material Type Market Share Analysis

9.    Middle East & Africa Automotive Composite Market Outlook

9.1.  Market Size & Forecast       

9.1.1.    By Value & Volume

9.2.  Market Share & Forecast

9.2.1.    By Application Type Market Share Analysis

9.2.2.    By Material Type Market Share Analysis

9.2.3.    By Region Market Share Analysis

9.2.3.1.        South Africa Automotive Composite Market Outlook

9.2.3.1.1.           Market Size & Forecast

9.2.3.1.1.1.               By Value & Volume

9.2.3.1.2.           Market Share & Forecast

9.2.3.1.2.1.               By Application Type Market Share Analysis

9.2.3.1.2.2.               By Material Type Market Share Analysis

9.2.3.2.        Saudi Arabia Automotive Composite Market Outlook

9.2.3.2.1.           Market Size & Forecast

9.2.3.2.1.1.               By Value & Volume

9.2.3.2.2.           Market Share & Forecast

9.2.3.2.2.1.               By Application Type Market Share Analysis

9.2.3.2.2.2.               By Material Type Market Share Analysis

9.2.3.3.        UAE Automotive Composite Market Outlook

9.2.3.3.1.           Market Size & Forecast

9.2.3.3.1.1.               By Value & Volume

9.2.3.3.2.           Market Share & Forecast

9.2.3.3.2.1.               By Application Type Market Share Analysis

9.2.3.3.2.2.               By Material Type Market Share Analysis

9.2.3.4.        Turkey Automotive Composite Market Outlook

9.2.3.4.1.           Market Size & Forecast

9.2.3.4.1.1.               By Value & Volume

9.2.3.4.2.           Market Share & Forecast

9.2.3.4.2.1.               By Application Type Market Share Analysis

9.2.3.4.2.2.               By Material Type Market Share Analysis

10. South America Automotive Composite Market Outlook

10.1.             Market Size & Forecast        

10.1.1. By Value & Volume

10.2.             Market Share & Forecast

10.2.1. By Application Type Market Share Analysis

10.2.2. By Material Type Market Share Analysis

10.2.3. By Region Market Share Analysis

10.2.3.1.     Brazil Automotive Composite Market Outlook

10.2.3.1.1.         Market Size & Forecast

10.2.3.1.1.1.            By Value & Volume

10.2.3.1.2.         Market Share & Forecast

10.2.3.1.2.1.            By Application Type Market Share Analysis

10.2.3.1.2.2.            By Material Type Market Share Analysis

10.2.3.2.     Argentina Automotive Composite Market Outlook

10.2.3.2.1.         Market Size & Forecast

10.2.3.2.1.1.            By Value & Volume

10.2.3.2.2.         Market Share & Forecast

10.2.3.2.2.1.            By Application Type Market Share Analysis

10.2.3.2.2.2.            By Material Type Market Share Analysis

11. Market Dynamics

11.1.             Drivers

11.2.             Challenges

12. Impact of COVID-19 on Global Automotive Composite Market

12.1.             Impact Assessment Model   

12.1.1. Key Segments Impacted

12.1.2. Key Regions Impacted

12.1.3. Key Countries Impacted

13. Market Trends & Developments

14. Competitive Landscape

14.1.             Company Profiles

14.1.1. Toray Industries, Inc.

14.1.1.1.     Company Details

14.1.1.2.     Products

14.1.1.3.     Financials (As Per Availability)

14.1.1.4.     Key Market Focus & Geographical Presence

14.1.1.5.     Recent Developments

14.1.1.6.     Key Management Personnel

14.1.2. SGL Carbon

14.1.2.1.     Company Details

14.1.2.2.     Products

14.1.2.3.     Financials (As Per Availability)

14.1.2.4.     Key Market Focus & Geographical Presence

14.1.2.5.     Recent Developments

14.1.2.6.     Key Management Personnel

14.1.3. Hexcel Corporation

14.1.3.1.     Company Details

14.1.3.2.     Products

14.1.3.3.     Financials (As Per Availability)

14.1.3.4.     Key Market Focus & Geographical Presence

14.1.3.5.     Recent Developments

14.1.3.6.     Key Management Personnel

14.1.4. Mitsubishi Chemical Carbon Fiber and Composites, Inc.

14.1.4.1.     Company Details

14.1.4.2.     Products

14.1.4.3.     Financials (As Per Availability)

14.1.4.4.     Key Market Focus & Geographical Presence

14.1.4.5.     Recent Developments

14.1.4.6.     Key Management Personnel

14.1.5. mouldCAM Pty Ltd.

14.1.5.1.     Company Details

14.1.5.2.     Products

14.1.5.3.     Financials (As Per Availability)

14.1.5.4.     Key Market Focus & Geographical Presence

14.1.5.5.     Recent Developments

14.1.5.6.     Key Management Personnel

14.1.6. Nippon Sheet Glass Co., Ltd

14.1.6.1.     Company Details

14.1.6.2.     Products

14.1.6.3.     Financials (As Per Availability)

14.1.6.4.     Key Market Focus & Geographical Presence

14.1.6.5.     Recent Developments

14.1.6.6.     Key Management Personnel

14.1.7. Sigmatex

14.1.7.1.     Company Details

14.1.7.2.     Products

14.1.7.3.     Financials (As Per Availability)

14.1.7.4.     Key Market Focus & Geographical Presence

14.1.7.5.     Recent Developments

14.1.7.6.     Key Management Personnel

14.1.8. Solvay

14.1.8.1.     Company Details

14.1.8.2.     Products

14.1.8.3.     Financials (As Per Availability)

14.1.8.4.     Key Market Focus & Geographical Presence

14.1.8.5.     Recent Developments

14.1.8.6.     Key Management Personnel

14.1.9. Magna International Inc.

14.1.9.1.     Company Details

14.1.9.2.     Products

14.1.9.3.     Financials (As Per Availability)

14.1.9.4.     Key Market Focus & Geographical Presence

14.1.9.5.     Recent Developments

14.1.9.6.     Key Management Personnel

14.1.10. Plasan Sasa Ltd.

14.1.10.1.  Company Details

14.1.10.2.  Products

14.1.10.3.  Financials (As Per Availability)

14.1.10.4.  Key Market Focus & Geographical Presence

14.1.10.5.  Recent Developments

14.1.10.6.  Key Management Personnel

15. Strategic Recommendations/Action Plan

15.1.             Key Focus Areas

15.2.             Target By Application Type

15.3.             Target By Material Type

16.  About Us & Disclaimer

 

 

Figures and Tables

Frequently asked questions

Frequently asked questions

The market size of the Global Automotive Composite Market was estimated to be USD 9.50 Billion in 2023.

Major drivers for the global automotive composite market include the increasing integration of advanced manufacturing techniques like 3D printing to create complex composite structures, growing consumer demand for personalized and premium vehicle designs enabled by the flexibility of composites, and the rising emphasis on energy efficiency in autonomous vehicles requiring lightweight and high-strength materials for optimized sensor and structural performance.

In 2023, structural assembly was the fastest-growing segment in the global automotive composite market due to its critical role in supporting modular vehicle architectures and multi-material integration. The increasing adoption of composite-intensive designs for crash absorption and enhanced torsional rigidity made it pivotal for safety and performance. Advancements in bonding technologies also enabled the seamless incorporation of composites into hybrid vehicle structures, accelerating growth.

Asia-Pacific is the dominant region in the global automotive composite market due to its extensive network of suppliers and manufacturers, enabling cost-effective production at scale. The rapid urbanization and growing infrastructure in countries like India and Southeast Asia have fueled demand for lightweight vehicles, boosting composite adoption. Collaboration between academia and industry in developing next-generation materials further solidifies the region's leadership.

Related Reports