Report Description

Forecast Period


Market Size (2022)

USD 6 billion

CAGR (2023-2028)


Fastest Growing Segment

Commercial Vehicle

Largest Market

North America

Market Overview

Global Automotive Cybersecurity Market has valued at USD 6 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.29% through 2028. Because of new manufacturing processes and consumer-challenging technology, automotive cyber security is undergoing a rapid revolution influenced by socioeconomic and environmental changes. Vehicle connectivity is rapidly developing, opening up new opportunities for innovative new features and enticing commercial tactics. At the same time, the risk of cyber-attacks on automobile networks is increasing. Cyberattacks have caused financial losses as well as harm to vehicle safety and reliability. Autonomous vehicles have lately advanced significantly due to the adoption of technology such as artificial intelligence, machine learning, private 5G, edge computing, and high-performance processing units. Edge computing helps autonomous vehicles manage a vast quantity of information at the edge, reducing latency and allowing vehicles to make data-driven choices in real time.

Key Market Drivers

Growing Connectivity and the Internet of Things (IoT)

The proliferation of connected vehicles is a driving force behind the growth of the automotive cybersecurity market. Modern vehicles are becoming increasingly connected, equipped with features such as infotainment systems, telematics, remote diagnostics, and over-the-air (OTA) software updates. These features enhance the driving experience and offer numerous benefits, but they also introduce vulnerabilities to cyber threats. Connected vehicles rely on various communication interfaces and networks to exchange data with external systems and services. These connections can become potential attack vectors if not adequately secured. Cyber attackers can target vehicle systems through these interfaces, potentially compromising safety, privacy, and data security. As connectivity continues to expand, the demand for robust automotive cybersecurity solutions is surging. Automakers and cybersecurity providers are collaborating to develop advanced security measures, including secure gateways, intrusion detection systems, and encryption protocols. These technologies safeguard the communication channels within vehicles, protecting against unauthorized access and data breaches. Moreover, with the rise of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, ensuring the security of data exchanges between vehicles and external entities is paramount. This trend is pushing the automotive industry to prioritize cybersecurity measures that safeguard the integrity of connected vehicle ecosystems.

Autonomous Driving and Safety-Critical Cybersecurity

The pursuit of autonomous driving represents a fundamental transformation in the automotive industry. Autonomous vehicles rely on complex sensor systems, high-performance processors, and extensive software to perceive their surroundings, make real-time decisions, and navigate safely. While autonomy promises enhanced safety and convenience, it also introduces unique cybersecurity challenges. Safety-critical cybersecurity is emerging as a specialized field within automotive cybersecurity, addressing the specific needs of autonomous vehicles. The integrity and security of sensor data are of utmost importance, as any tampering or manipulation of sensor inputs could lead to accidents or other hazardous situations. To ensure safety-critical cybersecurity, autonomous vehicles are equipped with redundant sensor systems and processing units. These redundancies detect and mitigate sensor failures or cyberattacks, ensuring that the vehicle can operate safely. Additionally, data from these sensors is processed through safety-critical microcontrollers, adhering to stringent functional safety standards like ISO 26262. In the context of autonomous vehicles, cybersecurity extends to the entire software stack, encompassing perception, decision-making, and control systems. Intrusion detection systems and anomaly detection algorithms are employed to identify and respond to cyber threats in real-time. Secure communication protocols protect data exchanges between autonomous vehicles and infrastructure components, such as traffic lights and road sensors. As autonomous driving technology advances, safety-critical cybersecurity will remain a top priority. The automotive industry will continue to invest in research and development to enhance the resilience of autonomous systems against cyberattacks, ensuring the safety of passengers and pedestrians.

Regulatory Frameworks and Compliance Requirements

Regulatory frameworks and compliance requirements are playing a pivotal role in driving the automotive cybersecurity market. Governments and regulatory bodies worldwide are recognizing the need to establish clear guidelines and standards to ensure the cybersecurity of connected and autonomous vehicles. These regulations aim to promote a consistent and robust approach to cybersecurity across the automotive industry. For example, the United Nations Economic Commission for Europe (UNECE) has introduced the "Regulation on Cybersecurity and Cybersecurity Management System" (R155). This regulation outlines requirements for cybersecurity management systems in vehicles and serves as a foundational framework for automotive cybersecurity. In the United States, the National Highway Traffic Safety Administration (NHTSA) has issued guidelines for automotive cybersecurity best practices and is actively working to establish cybersecurity standards for the automotive industry. These guidelines encourage automakers to proactively address cybersecurity risks and promote the implementation of cybersecurity measures. Additionally, industry organizations such as the Society of Automotive Engineers (SAE) have published cybersecurity standards, including SAE J3061, which provides a framework for automotive cybersecurity engineering processes.