Report Description

Forecast Period

2024-2028

Market Size (2022)

USD 6 billion

CAGR (2023-2028)

5.29%

Fastest Growing Segment

Commercial Vehicle

Largest Market

North America


Market Overview

Global Automotive Cybersecurity Market has valued at USD 6 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.29% through 2028. Because of new manufacturing processes and consumer-challenging technology, automotive cyber security is undergoing a rapid revolution influenced by socioeconomic and environmental changes. Vehicle connectivity is rapidly developing, opening up new opportunities for innovative new features and enticing commercial tactics. At the same time, the risk of cyber-attacks on automobile networks is increasing. Cyberattacks have caused financial losses as well as harm to vehicle safety and reliability. Autonomous vehicles have lately advanced significantly due to the adoption of technology such as artificial intelligence, machine learning, private 5G, edge computing, and high-performance processing units. Edge computing helps autonomous vehicles manage a vast quantity of information at the edge, reducing latency and allowing vehicles to make data-driven choices in real time.

Key Market Drivers

Growing Connectivity and the Internet of Things (IoT)

The proliferation of connected vehicles is a driving force behind the growth of the automotive cybersecurity market. Modern vehicles are becoming increasingly connected, equipped with features such as infotainment systems, telematics, remote diagnostics, and over-the-air (OTA) software updates. These features enhance the driving experience and offer numerous benefits, but they also introduce vulnerabilities to cyber threats. Connected vehicles rely on various communication interfaces and networks to exchange data with external systems and services. These connections can become potential attack vectors if not adequately secured. Cyber attackers can target vehicle systems through these interfaces, potentially compromising safety, privacy, and data security. As connectivity continues to expand, the demand for robust automotive cybersecurity solutions is surging. Automakers and cybersecurity providers are collaborating to develop advanced security measures, including secure gateways, intrusion detection systems, and encryption protocols. These technologies safeguard the communication channels within vehicles, protecting against unauthorized access and data breaches. Moreover, with the rise of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, ensuring the security of data exchanges between vehicles and external entities is paramount. This trend is pushing the automotive industry to prioritize cybersecurity measures that safeguard the integrity of connected vehicle ecosystems.

Autonomous Driving and Safety-Critical Cybersecurity

The pursuit of autonomous driving represents a fundamental transformation in the automotive industry. Autonomous vehicles rely on complex sensor systems, high-performance processors, and extensive software to perceive their surroundings, make real-time decisions, and navigate safely. While autonomy promises enhanced safety and convenience, it also introduces unique cybersecurity challenges. Safety-critical cybersecurity is emerging as a specialized field within automotive cybersecurity, addressing the specific needs of autonomous vehicles. The integrity and security of sensor data are of utmost importance, as any tampering or manipulation of sensor inputs could lead to accidents or other hazardous situations. To ensure safety-critical cybersecurity, autonomous vehicles are equipped with redundant sensor systems and processing units. These redundancies detect and mitigate sensor failures or cyberattacks, ensuring that the vehicle can operate safely. Additionally, data from these sensors is processed through safety-critical microcontrollers, adhering to stringent functional safety standards like ISO 26262. In the context of autonomous vehicles, cybersecurity extends to the entire software stack, encompassing perception, decision-making, and control systems. Intrusion detection systems and anomaly detection algorithms are employed to identify and respond to cyber threats in real-time. Secure communication protocols protect data exchanges between autonomous vehicles and infrastructure components, such as traffic lights and road sensors. As autonomous driving technology advances, safety-critical cybersecurity will remain a top priority. The automotive industry will continue to invest in research and development to enhance the resilience of autonomous systems against cyberattacks, ensuring the safety of passengers and pedestrians.

Regulatory Frameworks and Compliance Requirements

Regulatory frameworks and compliance requirements are playing a pivotal role in driving the automotive cybersecurity market. Governments and regulatory bodies worldwide are recognizing the need to establish clear guidelines and standards to ensure the cybersecurity of connected and autonomous vehicles. These regulations aim to promote a consistent and robust approach to cybersecurity across the automotive industry. For example, the United Nations Economic Commission for Europe (UNECE) has introduced the "Regulation on Cybersecurity and Cybersecurity Management System" (R155). This regulation outlines requirements for cybersecurity management systems in vehicles and serves as a foundational framework for automotive cybersecurity. In the United States, the National Highway Traffic Safety Administration (NHTSA) has issued guidelines for automotive cybersecurity best practices and is actively working to establish cybersecurity standards for the automotive industry. These guidelines encourage automakers to proactively address cybersecurity risks and promote the implementation of cybersecurity measures. Additionally, industry organizations such as the Society of Automotive Engineers (SAE) have published cybersecurity standards, including SAE J3061, which provides a framework for automotive cybersecurity engineering processes.


Download Free Sample Report

Key Market Challenges

Rapidly Evolving Threat Landscape

One of the foremost challenges in the global automotive cybersecurity market is the rapidly evolving threat landscape. As vehicles become more connected and autonomous, they become attractive targets for cyberattacks. Hackers are continually developing new attack vectors and malware to exploit vulnerabilities in vehicle software and communication systems. These attacks can have severe consequences, including unauthorized access to critical vehicle functions, theft of sensitive personal information, and even physical harm to the occupants. The threat landscape is further complicated by the increasing interconnectivity of vehicles with external networks and infrastructure. The emergence of smart cities and V2X (Vehicle-to-Everything) communication systems has created new opportunities for cybercriminals to exploit weaknesses in the automotive ecosystem. Automotive cybersecurity solutions must evolve to keep pace with these threats, and this constant need for adaptation poses a significant challenge for the industry. Manufacturers and suppliers need to continuously update and improve their security measures to defend against increasingly sophisticated attacks.

Complex Supply Chain Vulnerabilities

Automotive manufacturers rely on complex global supply chains to source components and software from various suppliers. This multi-tier supply chain creates vulnerabilities in the cybersecurity ecosystem. Each supplier involved in the production of a vehicle introduces potential security risks. For example, a single vulnerable component or software module can compromise the entire vehicle's security. Coordinating cybersecurity measures across multiple suppliers is a considerable challenge. Ensuring that all components and software are developed with robust security features, maintained, and updated throughout the vehicle's lifecycle requires a high level of coordination and oversight.

Regulatory Compliance and Certification

The automotive industry faces an array of national and international regulations related to vehicle safety and cybersecurity. These regulations are often complex, and they can vary from region to region, making it difficult for manufacturers to ensure compliance across global markets. Non-compliance can result in hefty fines and damage to a brand's reputation. Achieving regulatory compliance requires extensive testing, documentation, and validation of cybersecurity measures. As regulations evolve to address emerging threats and vulnerabilities, manufacturers must continually adapt their products and processes. This not only adds to the cost of development and production but also poses a significant challenge in terms of keeping up with changing regulatory requirements. In addition to compliance, there is a growing need for industry-standard certification and validation processes to ensure that automotive cybersecurity solutions meet specified standards. This certification process can be time-consuming and expensive, further adding to the challenges faced by the industry.

Consumer Awareness and Acceptance

Building trust and awareness among consumers is essential for the adoption of automotive cybersecurity solutions. Many consumers are unaware of the potential risks associated with cyberattacks on their vehicles. Moreover, there is a level of skepticism about the effectiveness of cybersecurity measures in the automotive sector. Convincing consumers to embrace these solutions and potentially pay a premium for them can be a significant challenge. It requires automakers and cybersecurity companies to effectively communicate the benefits of these technologies, both in terms of personal safety and data protection. Additionally, the industry needs to establish clear communication channels for informing consumers about updates, patches, and recalls related to cybersecurity. Building a culture of transparency and trust is crucial for long-term success in the automotive cybersecurity market.

Integration with Legacy Systems

The automotive industry has a vast fleet of vehicles on the road that were manufactured before cybersecurity became a significant concern. These legacy vehicles lack the built-in security features of modern vehicles, making them vulnerable to cyberattacks. Retrofitting legacy vehicles with cybersecurity solutions is a formidable challenge. These older vehicles may not have the necessary computing power, sensors, or communication interfaces to support advanced security features. Integrating cybersecurity into legacy systems often requires complex hardware and software modifications, which can be expensive and technically challenging. Moreover, integrating cybersecurity solutions into legacy systems must be done without compromising vehicle performance and safety. Striking a balance between enhancing security and maintaining the functionality of older vehicles is a complex task that the industry must grapple with.

Key Market Trends

Rising Connectivity and the IoT Integration

The proliferation of connected vehicles is a significant trend in the automotive industry, with vehicles increasingly becoming part of the broader Internet of Things (IoT) ecosystem. This trend is driven by consumer demand for features like infotainment systems, remote vehicle monitoring, and over-the-air (OTA) software updates. However, the increased connectivity also expands the attack surface for cyber threats, making automotive cybersecurity a top priority for automakers. Connected vehicles rely on numerous communication interfaces and networks to interact with external systems and services. These connections create vulnerabilities that hackers can exploit to gain unauthorized access to a vehicle's systems or compromise data security. To address these vulnerabilities, automotive cybersecurity solutions are becoming increasingly sophisticated. Security measures such as secure gateways, intrusion detection systems, and firewalls are implemented to protect the vehicle's communication channels. Moreover, encryption and secure boot processes are used to safeguard software and firmware updates, ensuring that only authenticated and authorized updates are applied to the vehicle's systems. As the automotive industry continues to embrace connectivity, the demand for robust cybersecurity solutions will grow. Automotive cybersecurity will evolve to become an integral part of vehicle design and manufacturing, ensuring that connected vehicles remain safe and secure.

Autonomous Vehicles and Safety-Critical Cybersecurity

The development and deployment of autonomous vehicles represent a pivotal trend in the automotive industry. Autonomous vehicles rely on complex sensor arrays, high-performance processors, and extensive software to perceive their surroundings, make real-time decisions, and navigate safely. While autonomous technology promises to revolutionize transportation by reducing accidents and improving traffic flow, it also introduces new cybersecurity challenges. Safety-critical cybersecurity is emerging as a specialized field within automotive cybersecurity, addressing the unique needs of autonomous vehicles. The integrity and security of sensor data are paramount, as any tampering or manipulation of sensor inputs could lead to catastrophic consequences. To ensure safety-critical cybersecurity, vehicles are equipped with redundant sensors and processing units to detect and mitigate sensor failures or attacks. Moreover, the data from these sensors is processed through safety-critical microcontrollers that adhere to stringent functional safety standards like ISO 26262. In autonomous vehicles, cybersecurity extends to the entire software stack, including perception, decision-making, and control systems. Advanced intrusion detection systems and anomaly detection algorithms are employed to identify and respond to cyber threats in real-time. Additionally, secure communication protocols are implemented to protect data exchanges between autonomous vehicles and infrastructure components, such as traffic lights and road sensors. As the development and deployment of autonomous vehicles continue, safety-critical cybersecurity will remain a top priority. The automotive industry will invest in research and development to enhance the resilience of autonomous systems against cyberattacks, ensuring the safety of passengers and pedestrians.

Regulatory Frameworks and Standards

The automotive cybersecurity landscape is also shaped by regulatory frameworks and industry standards. Governments and regulatory bodies worldwide are recognizing the need to establish clear guidelines and standards to ensure the cybersecurity of connected and autonomous vehicles. These regulations aim to promote a uniform approach to cybersecurity across the automotive industry. In the United States, the National Highway Traffic Safety Administration (NHTSA) has issued guidelines for cybersecurity best practices and is working to establish cybersecurity standards for the automotive industry. In addition to government regulations, industry organizations such as the Society of Automotive Engineers (SAE) have published cybersecurity standards, including SAE J3061, which provides a framework for automotive cybersecurity engineering processes. These regulations and standards serve as a foundation for automakers and cybersecurity providers to develop and implement effective cybersecurity measures. Compliance with these guidelines not only enhances cybersecurity but also fosters consumer trust in connected and autonomous vehicles.

Over-the-Air (OTA) Updates and Continuous Monitoring

The ability to deliver OTA software updates to vehicles is a transformative trend in the automotive industry, offering numerous benefits such as bug fixes, feature enhancements, and security patches. OTA updates enable automakers to keep vehicles up to date with the latest software, ensuring optimal performance and security. However, OTA updates also introduce cybersecurity considerations. Ensuring the authenticity and integrity of OTA updates is crucial to prevent unauthorized or malicious updates. To address this challenge, automotive manufacturers are implementing secure OTA update mechanisms. Secure OTA updates involve cryptographic signatures to verify the authenticity of updates, secure boot processes to ensure the integrity of the update package, and secure channels for transmitting updates to vehicles. Additionally, continuous monitoring and anomaly detection systems are employed to detect any abnormal behavior after an OTA update. In the event of a security vulnerability or threat, automakers can quickly deploy security patches to mitigate risks, enhancing the cybersecurity posture of connected vehicles. OTA updates also offer a cost-effective way to address vulnerabilities without requiring physical recalls or service center visits. As the adoption of OTA updates becomes more widespread, automotive cybersecurity solutions will need to adapt and evolve to protect the integrity of the update process and ensure the ongoing security of connected vehicles.

Collaboration and Information Sharing:

Collaboration and information sharing among automotive industry stakeholders are essential trends in automotive cybersecurity. The complex and evolving nature of cyber threats requires a collective effort to identify vulnerabilities, share threat intelligence, and develop effective countermeasures. Automakers are collaborating with cybersecurity firms and research organizations to conduct comprehensive security assessments and penetration testing on vehicle systems. These efforts aim to identify potential weaknesses and vulnerabilities before they can be exploited by malicious actors.

 Segmental Insights

Vehicle Type Analysis

The passenger car segment dominates the automotive cybersecurity market, owing to increased investments in autonomous mobility, the introduction of software-defined cars, and rising sales of L2 autonomous vehicles, among other factors. In Asia Pacific, production and sales of luxury and mid-size vehicles are expanding, and OEMs are developing new models in the mid-size vehicle class that are equipped with connected and ADAS capabilities. As a result, rising sales of premium vehicles in developing countries are likely to propel the Asia Pacific passenger car industry.  The growing integration of advanced connected technologies in passenger vehicles, such as infotainment systems, telematics, and autonomous capabilities, is driving the need for robust automotive cybersecurity solutions.

Application Analysis

The automotive cyber security market is divided into four applications: ADAS & Safety System, Infotainment, Body Electronics, Powertrain, and Telematics. The infotainment sector dominated the market and is predicted to increase at a rapid pace over the forecast period. The entire automotive industry is working to develop breakthrough technologies to provide better connection options, increase vehicle safety, and improve in-car user experience. The "In-Vehicle Infotainment System" is one of the critical technologies that serves as the focal point of all modern automobile systems and integrates their operations so that they may be managed and monitored from a single central unit. Vehicles using ADAS technology may work in a manner similar to a driver monitoring the weather, spotting objects on the road, and so on.


Download Free Sample Report

Regional Insights

In 2022, the automotive cybersecurity industry in North America will be the largest. The industry is seeing a one-of-a-kind growth driver as a result of the convergence of stringent autonomous car laws and the need for comprehensive security. As the region accelerates autonomous vehicle testing and deployment, regulatory authorities require stringent cybersecurity protocols to ensure public safety and data protection. This convergence creates a market for specialized cybersecurity solutions that address both compliance and advanced threat mitigation, giving companies that can seamlessly integrate regulatory compliance with cutting-edge security measures a competitive advantage in the dynamic landscape of autonomous mobility. Asia-Pacific has the second-largest market share for automotive cyber security. This is because of the constantly increasing demand for automotive vehicles, as well as sophisticated communication technologies in vehicles. Furthermore, China's automotive cyber security market had the greatest market share, while India's automotive cyber security industry was the Asia-Pacific region's fastest expanding market.

Due to consumer demand for comfort driving, automated features, and driver and passenger safety, Europe's automotive cyber security industry accounts for the third-largest market share. The presence of large tier -1 suppliers in the region, as well as increased worries about cyber-attacks on automobiles, are driving market expansion in Europe.

Recent Developments

  • BlackBerry Limited teamed with automotive cybersecurity platform Upstream Security in June 2023 to assist automakers in improving the security posture of their vehicles. By merging Upstream's V- XDR platform with BlackBerry IVY, OEMs may use and pre-process data at the vehicle's edge, offering a wide range of relevant insights in real-time, ensuring cybersecurity compliance, and lowering cloud connectivity costs.
  • LG Electronics acquired Cybellum in September 2021 to improve its cybersecurity capabilities. The company's Cyber Digital Twins technology can access source code to create a comprehensive picture of a vehicle's software components and rapidly identify any vulnerabilities that could be exploited. Using a real-time threat intelligence feed, the software scans for vulnerabilities and then gives a detailed assessment of those vulnerabilities as well as remedies.
  • ETAS (a subsidiary of Robert Bosch GmbH) introduced ESCRYPT C_ycurRISK, a software solution for threat analysis and risk assessment, in February 2023. It enables automotive OEMs and suppliers to uncover security flaws throughout vehicle development and systematically mitigate cyber threats.
  • HL Mando Corporation joined forces with Argus Cyber Security in January 2023. Beginning in January 2023, the Argus CAN Intrusion Detection Systems (IDS) solution was deployed to HL Mandbo's electrification system products, such as brakes and steering, as part of this agreement.
  • NTT Communications Corporation and DENSO Corporation (DENSO) were supposed to create vehicle security operation center technology (VSOC1) in October 2022 in response to the threat of more sophisticated cyber-attacks on automobiles.

Key Market Players

  • Intel Corporation
  • Escrypt Embedded Systems
  • Arilou Automotive Cybersecurity
  • DENSO CORPORATION
  • Continental AG,
  • HARMAN International
  • Robert Bosch GmbH
  • Cisco Systems Inc.
  • Argus Cyber Security
  • Karamba Security
     

By Vehicle Type

By Security Type

By Application Type

By Region

  • Passenger Cars
  • Commercial Vehicles
  • Application
  • Network
  • Endpoint
  • ADAS & Safety System
  • Infotainment
  • Body Electronics
  • Powertrain
  • Telematics
  • North America
  • Europe & CIS
  • Asia Pacific
  • South America
  • Middle East & Africa

 

Report Scope:

In this report, the Global Automotive Cybersecurity Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

  • Automotive Cybersecurity Market, By Vehicle Type:

o   Passenger Cars

o   Commercial Vehicles

  • Automotive Cybersecurity Market, By Security Type:

o   Application

o   Network

o   Endpoint

  • Automotive Cybersecurity Market, By Application Type:

o   ADAS & Safety System

o   Infotainment

o   Body Electronics

o   Powertrain

o   Telematics

  • Automotive Cybersecurity Market, By Region:

o   Asia-Pacific

§  China

§  India

§  Japan

§  Indonesia

§  Thailand

§  South Korea

§  Australia

o   Europe & CIS

§  Germany

§  Spain

§  France

§  Russia

§  Italy

§  United Kingdom

§  Belgium

o   North America

§  United States

§  Canada

§  Mexico

o   South America

§  Brazil

§  Argentina

§  Colombia

o   Middle East & Africa

§  South Africa

§  Turkey

§  Saudi Arabia

§  UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Cybersecurity Market.

Available Customizations:

Global Automotive Cybersecurity market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Global Automotive Cybersecurity Market is an upcoming report to be released soon. If you wish an early delivery of this report or want to confirm the date of release, please contact us at [email protected]

Table of content

1.    Introduction

1.1.  Product Overview

1.2.  Key Highlights of the Report

1.3.  Market Coverage

1.4.  Market Segments Covered

1.5.  Research Tenure Considered

2.    Research Methodology

2.1.  Objective of the Study

2.2.  Baseline Methodology

2.3.  Key Industry Partners

2.4.  Major Association and Secondary Sources

2.5.  Forecasting Methodology

2.6.  Data Triangulation & Validation

2.7.  Assumptions and Limitations

3.    Executive Summary

3.1.  Market Overview

3.2.  Market Forecast

3.3.  Key Regions

3.4.  Key Segments

4.    Impact of COVID-19 on Global Automotive Cybersecurity Market

5.    Global Automotive Cybersecurity Market Outlook

5.1.  Market Size & Forecast

5.1.1.    By Value

5.2.  Market Share & Forecast

5.2.1.    By Vehicle Type Market Share Analysis (Passenger Cars, Commercial Vehicles)

5.2.2.    By Security Type Market Share Analysis (Application, Network, Endpoint)

5.2.3.    By Application Type Market Share Analysis (ADAS & Safety System, Infotainment, Body Electronics, Powertrain, Telematics)

5.2.4.    By Regional Market Share Analysis

5.2.4.1.        Asia-Pacific Market Share Analysis

5.2.4.2.        Europe & CIS Market Share Analysis

5.2.4.3.        North America Market Share Analysis

5.2.4.4.        South America Market Share Analysis

5.2.4.5.        Middle East & Africa Market Share Analysis

5.2.5.    By Company Market Share Analysis (Top 5 Companies, Others - By Value & Volume, 2022)

5.3.  Global Automotive Cybersecurity Market Mapping & Opportunity Assessment

5.3.1.    By Vehicle Type Market Mapping & Opportunity Assessment

5.3.2.    By Security Type Market Mapping & Opportunity Assessment

5.3.3.    By Application Type Market Mapping & Opportunity Assessment

5.3.4.    By Regional Market Mapping & Opportunity Assessment

6.    Asia-Pacific Automotive Cybersecurity Market Outlook

6.1.  Market Size & Forecast

6.1.1.    By Value  

6.2.  Market Share & Forecast

6.2.1.    By Vehicle Type Market Share Analysis

6.2.2.    By Security Type Market Share Analysis

6.2.3.    By Application Type Market Share Analysis

6.2.4.    By Country Market Share Analysis

6.2.4.1.        China Market Share Analysis

6.2.4.2.        India Market Share Analysis

6.2.4.3.        Japan Market Share Analysis

6.2.4.4.        Indonesia Market Share Analysis

6.2.4.5.        Thailand Market Share Analysis

6.2.4.6.        South Korea Market Share Analysis

6.2.4.7.        Australia Market Share Analysis

6.2.4.8.        Rest of Asia-Pacific Market Share Analysis

6.3.  Asia-Pacific: Country Analysis

6.3.1.    China Automotive Cybersecurity Market Outlook

6.3.1.1.        Market Size & Forecast

6.3.1.1.1.           By Value  

6.3.1.2.        Market Share & Forecast

6.3.1.2.1.           By Vehicle Type Market Share Analysis

6.3.1.2.2.           By Security Type Market Share Analysis

6.3.1.2.3.           By Application Type Market Share Analysis

6.3.2.    India Automotive Cybersecurity Market Outlook

6.3.2.1.        Market Size & Forecast

6.3.2.1.1.           By Value  

6.3.2.2.        Market Share & Forecast

6.3.2.2.1.           By Vehicle Type Market Share Analysis

6.3.2.2.2.           By Security Type Market Share Analysis

6.3.2.2.3.           By Application Type Market Share Analysis

6.3.3.    Japan Automotive Cybersecurity Market Outlook

6.3.3.1.        Market Size & Forecast

6.3.3.1.1.           By Value  

6.3.3.2.        Market Share & Forecast

6.3.3.2.1.           By Vehicle Type Market Share Analysis

6.3.3.2.2.           By Security Type Market Share Analysis

6.3.3.2.3.           By Application Type Market Share Analysis

6.3.4.    Indonesia Automotive Cybersecurity Market Outlook

6.3.4.1.        Market Size & Forecast

6.3.4.1.1.           By Value  

6.3.4.2.        Market Share & Forecast

6.3.4.2.1.           By Vehicle Type Market Share Analysis

6.3.4.2.2.           By Security Type Market Share Analysis

6.3.4.2.3.           By Application Type Market Share Analysis

6.3.5.    Thailand Automotive Cybersecurity Market Outlook

6.3.5.1.        Market Size & Forecast

6.3.5.1.1.           By Value  

6.3.5.2.        Market Share & Forecast

6.3.5.2.1.           By Vehicle Type Market Share Analysis

6.3.5.2.2.           By Security Type Market Share Analysis

6.3.5.2.3.           By Application Type Market Share Analysis

6.3.6.    South Korea Automotive Cybersecurity Market Outlook

6.3.6.1.        Market Size & Forecast

6.3.6.1.1.           By Value  

6.3.6.2.        Market Share & Forecast

6.3.6.2.1.           By Vehicle Type Market Share Analysis

6.3.6.2.2.           By Security Type Market Share Analysis

6.3.6.2.3.           By Application Type Market Share Analysis

6.3.7.    Australia Automotive Cybersecurity Market Outlook

6.3.7.1.        Market Size & Forecast

6.3.7.1.1.           By Value  

6.3.7.2.        Market Share & Forecast

6.3.7.2.1.           By Vehicle Type Market Share Analysis

6.3.7.2.2.           By Security Type Market Share Analysis

6.3.7.2.3.           By Application Type Market Share Analysis

7.    Europe & CIS Automotive Cybersecurity Market Outlook

7.1.  Market Size & Forecast

7.1.1.    By Value  

7.2.  Market Share & Forecast

7.2.1.    By Vehicle Type Market Share Analysis

7.2.2.    By Security Type Market Share Analysis

7.2.3.    By Application Type Market Share Analysis

7.2.4.    By Country Market Share Analysis

7.2.4.1.        Germany Market Share Analysis

7.2.4.2.        Spain Market Share Analysis

7.2.4.3.        France Market Share Analysis

7.2.4.4.        Russia Market Share Analysis

7.2.4.5.        Italy Market Share Analysis

7.2.4.6.        United Kingdom Market Share Analysis

7.2.4.7.        Belgium Market Share Analysis

7.2.4.8.        Rest of Europe & CIS Market Share Analysis

7.3.  Europe & CIS: Country Analysis

7.3.1.    Germany Automotive Cybersecurity Market Outlook

7.3.1.1.        Market Size & Forecast

7.3.1.1.1.           By Value  

7.3.1.2.        Market Share & Forecast

7.3.1.2.1.           By Vehicle Type Market Share Analysis

7.3.1.2.2.           By Security Type Market Share Analysis

7.3.1.2.3.           By Application Type Market Share Analysis

7.3.2.    Spain Automotive Cybersecurity Market Outlook

7.3.2.1.        Market Size & Forecast

7.3.2.1.1.           By Value  

7.3.2.2.        Market Share & Forecast

7.3.2.2.1.           By Vehicle Type Market Share Analysis

7.3.2.2.2.           By Security Type Market Share Analysis

7.3.2.2.3.           By Application Type Market Share Analysis

7.3.3.    France Automotive Cybersecurity Market Outlook

7.3.3.1.        Market Size & Forecast

7.3.3.1.1.           By Value  

7.3.3.2.        Market Share & Forecast

7.3.3.2.1.           By Vehicle Type Market Share Analysis

7.3.3.2.2.           By Security Type Market Share Analysis

7.3.3.2.3.           By Application Type Market Share Analysis

7.3.4.    Russia Automotive Cybersecurity Market Outlook

7.3.4.1.        Market Size & Forecast

7.3.4.1.1.           By Value  

7.3.4.2.        Market Share & Forecast

7.3.4.2.1.           By Vehicle Type Market Share Analysis

7.3.4.2.2.           By Security Type Market Share Analysis

7.3.4.2.3.           By Application Type Market Share Analysis

7.3.5.    Italy Automotive Cybersecurity Market Outlook

7.3.5.1.        Market Size & Forecast

7.3.5.1.1.           By Value  

7.3.5.2.        Market Share & Forecast

7.3.5.2.1.           By Vehicle Type Market Share Analysis

7.3.5.2.2.           By Security Type Market Share Analysis

7.3.5.2.3.           By Application Type Market Share Analysis

7.3.6.    United Kingdom Automotive Cybersecurity Market Outlook

7.3.6.1.        Market Size & Forecast

7.3.6.1.1.           By Value  

7.3.6.2.        Market Share & Forecast

7.3.6.2.1.           By Vehicle Type Market Share Analysis

7.3.6.2.2.           By Security Type Market Share Analysis

7.3.6.2.3.           By Application Type Market Share Analysis

7.3.7.    Belgium Automotive Cybersecurity Market Outlook

7.3.7.1.        Market Size & Forecast

7.3.7.1.1.           By Value  

7.3.7.2.        Market Share & Forecast

7.3.7.2.1.           By Vehicle Type Market Share Analysis

7.3.7.2.2.           By Security Type Market Share Analysis

7.3.7.2.3.           By Application Type Market Share Analysis

8.    North America Automotive Cybersecurity Market Outlook

8.1.  Market Size & Forecast

8.1.1.    By Value  

8.2.  Market Share & Forecast

8.2.1.    By Vehicle Type Market Share Analysis

8.2.2.    By Security Type Market Share Analysis

8.2.3.    By Application Type Market Share Analysis

8.2.4.    By Country Market Share Analysis

8.2.4.1.        United States Market Share Analysis

8.2.4.2.        Mexico Market Share Analysis

8.2.4.3.        Canada Market Share Analysis

8.3.  North America: Country Analysis

8.3.1.    United States Automotive Cybersecurity Market Outlook

8.3.1.1.        Market Size & Forecast

8.3.1.1.1.           By Value  

8.3.1.2.        Market Share & Forecast

8.3.1.2.1.           By Vehicle Type Market Share Analysis

8.3.1.2.2.           By Security Type Market Share Analysis

8.3.1.2.3.           By Application Type Market Share Analysis

8.3.2.    Mexico Automotive Cybersecurity Market Outlook

8.3.2.1.        Market Size & Forecast

8.3.2.1.1.           By Value  

8.3.2.2.        Market Share & Forecast

8.3.2.2.1.           By Vehicle Type Market Share Analysis

8.3.2.2.2.           By Security Type Market Share Analysis

8.3.2.2.3.           By Application Type Market Share Analysis

8.3.3.    Canada Automotive Cybersecurity Market Outlook

8.3.3.1.        Market Size & Forecast

8.3.3.1.1.           By Value  

8.3.3.2.        Market Share & Forecast

8.3.3.2.1.           By Vehicle Type Market Share Analysis

8.3.3.2.2.           By Security Type Market Share Analysis

8.3.3.2.3.           By Application Type Market Share Analysis

9.    South America Automotive Cybersecurity Market Outlook

9.1.  Market Size & Forecast

9.1.1.    By Value  

9.2.  Market Share & Forecast

9.2.1.    By Vehicle Type Market Share Analysis

9.2.2.    By Security Type Market Share Analysis

9.2.3.    By Application Type Market Share Analysis

9.2.4.    By Country Market Share Analysis

9.2.4.1.        Brazil Market Share Analysis

9.2.4.2.        Argentina Market Share Analysis

9.2.4.3.        Colombia Market Share Analysis

9.2.4.4.        Rest of South America Market Share Analysis

9.3.  South America: Country Analysis

9.3.1.    Brazil Automotive Cybersecurity Market Outlook

9.3.1.1.        Market Size & Forecast

9.3.1.1.1.           By Value  

9.3.1.2.        Market Share & Forecast

9.3.1.2.1.           By Vehicle Type Market Share Analysis

9.3.1.2.2.           By Security Type Market Share Analysis

9.3.1.2.3.           By Application Type Market Share Analysis

9.3.2.    Colombia Automotive Cybersecurity Market Outlook

9.3.2.1.        Market Size & Forecast

9.3.2.1.1.           By Value  

9.3.2.2.        Market Share & Forecast

9.3.2.2.1.           By Vehicle Type Market Share Analysis

9.3.2.2.2.           By Security Type Market Share Analysis

9.3.2.2.3.           By Application Type Market Share Analysis

9.3.3.    Argentina Automotive Cybersecurity Market Outlook

9.3.3.1.        Market Size & Forecast

9.3.3.1.1.           By Value  

9.3.3.2.        Market Share & Forecast

9.3.3.2.1.           By Vehicle Type Market Share Analysis

9.3.3.2.2.           By Security Type Market Share Analysis

9.3.3.2.3.           By Application Type Market Share Analysis

10. Middle East & Africa Automotive Cybersecurity Market Outlook

10.1.            Market Size & Forecast

10.1.1. By Value   

10.2.            Market Share & Forecast

10.2.1. By Vehicle Type Market Share Analysis

10.2.2. By Security Type Market Share Analysis

10.2.3. By Application Type Market Share Analysis

10.2.4. By Country Market Share Analysis

10.2.4.1.     South Africa Market Share Analysis

10.2.4.2.     Turkey Market Share Analysis

10.2.4.3.     Saudi Arabia Market Share Analysis

10.2.4.4.     UAE Market Share Analysis

10.2.4.5.     Rest of Middle East & Africa Market Share Africa

10.3.            Middle East & Africa: Country Analysis

10.3.1. South Africa Automotive Cybersecurity Market Outlook

10.3.1.1.     Market Size & Forecast

10.3.1.1.1.         By Value  

10.3.1.2.     Market Share & Forecast

10.3.1.2.1.         By Vehicle Type Market Share Analysis

10.3.1.2.2.         By Security Type Market Share Analysis

10.3.1.2.3.         By Application Type Market Share Analysis

10.3.2. Turkey Automotive Cybersecurity Market Outlook

10.3.2.1.     Market Size & Forecast

10.3.2.1.1.         By Value  

10.3.2.2.     Market Share & Forecast

10.3.2.2.1.         By Vehicle Type Market Share Analysis

10.3.2.2.2.         By Security Type Market Share Analysis

10.3.2.2.3.         By Application Type Market Share Analysis

10.3.3. Saudi Arabia Automotive Cybersecurity Market Outlook

10.3.3.1.     Market Size & Forecast

10.3.3.1.1.         By Value  

10.3.3.2.     Market Share & Forecast

10.3.3.2.1.         By Vehicle Type Market Share Analysis

10.3.3.2.2.         By Security Type Market Share Analysis

10.3.3.2.3.         By Application Type Market Share Analysis

10.3.4. UAE Automotive Cybersecurity Market Outlook

10.3.4.1.     Market Size & Forecast

10.3.4.1.1.         By Value  

10.3.4.2.     Market Share & Forecast

10.3.4.2.1.         By Vehicle Type Market Share Analysis

10.3.4.2.2.         By Security Type Market Share Analysis

10.3.4.2.3.         By Application Type Market Share Analysis

11. SWOT Analysis

11.1.            Strength

11.2.            Weakness

11.3.            Opportunities

11.4.            Threats

12. Market Dynamics

12.1.            Market Drivers

12.2.            Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

14.1.            Company Profiles (Up to 10 Major Companies)

14.1.1. Intel Corporation

14.1.1.1.     Company Details

14.1.1.2.     Key Product Offered

14.1.1.3.     Financials (As Per Availability)

14.1.1.4.     Recent Developments

14.1.1.5.     Key Management Personnel

14.1.2. Escrypt Embedded Systems

14.1.2.1.     Company Details

14.1.2.2.     Key Product Offered

14.1.2.3.     Financials (As Per Availability)

14.1.2.4.     Recent Developments

14.1.2.5.     Key Management Personnel

14.1.3. Arilou Automotive Cybersecurity

14.1.3.1.     Company Details

14.1.3.2.     Key Product Offered

14.1.3.3.     Financials (As Per Availability)

14.1.3.4.     Recent Developments

14.1.3.5.     Key Management Personnel

14.1.4. Cisco Systems Inc.

14.1.4.1.     Company Details

14.1.4.2.     Key Product Offered

14.1.4.3.     Financials (As Per Availability)

14.1.4.4.     Recent Developments

14.1.4.5.     Key Management Personnel

14.1.5. Harman Intemational Industries Inc.

14.1.5.1.     Company Details

14.1.5.2.     Key Product Offered

14.1.5.3.     Financials (As Per Availability)

14.1.5.4.     Recent Developments

14.1.5.5.     Key Management Personnel

14.1.6. Denso Corporation.

14.1.6.1.     Company Details

14.1.6.2.     Key Product Offered

14.1.6.3.     Financials (As Per Availability)

14.1.6.4.     Recent Developments

14.1.6.5.     Key Management Personnel

14.1.7. Argus Cyber Security

14.1.7.1.     Company Details

14.1.7.2.     Key Product Offered

14.1.7.3.     Financials (As Per Availability)

14.1.7.4.     Recent Developments

14.1.7.5.     Key Management Personnel

14.1.8. Continental AG

14.1.8.1.     Company Details

14.1.8.2.     Key Product Offered

14.1.8.3.     Financials (As Per Availability)

14.1.8.4.     Recent Developments

14.1.8.5.     Key Management Personnel

14.1.9. Robert Bosch GmbH

14.1.9.1.     Company Details

14.1.9.2.     Key Product Offered

14.1.9.3.     Financials (As Per Availability)

14.1.9.4.     Recent Developments

14.1.9.5.     Key Management Personnel

14.1.10.              Karamba Security

14.1.10.1.  Company Details

14.1.10.2.  Key Product Offered

14.1.10.3.  Financials (As Per Availability)

14.1.10.4.  Recent Developments

14.1.10.5.  Key Management Personnel

15. Strategic Recommendations

15.1.            Key Focus Areas

15.1.1. Target Regions

15.1.2. Target Vehicle Type

16. About Us & Disclaimer

Figures and Tables

Frequently asked questions

down-arrow

The market size of the Global Automotive Cybersecurity Market was estimated to be USD 6 billion in 2022.

down-arrow

The passenger car segment dominates the automotive cybersecurity market, owing to increased investments in autonomous mobility, the introduction of software-defined cars, and rising sales of L2 autonomous vehicles, among other factors. In Asia Pacific, production and sales of luxury and mid-size vehicles are expanding, and OEMs are developing new models in the mid-size vehicle class that are equipped with connected and ADAS capabilities. As a result, rising sales of premium vehicles in developing countries are likely to propel the Asia Pacific passenger car industry. The growing integration of advanced connected technologies in passenger vehicles, such as infotainment systems, telematics, and autonomous capabilities, is driving the need for robust automotive cybersecurity solutions.

down-arrow

In 2022, the automotive cybersecurity industry in North America will be the largest. The industry is seeing a one-of-a-kind growth driver as a result of the convergence of stringent autonomous car laws and the need for comprehensive security. As the region accelerates autonomous vehicle testing and deployment, regulatory authorities require stringent cybersecurity protocols to ensure public safety and data protection. This convergence creates a market for specialized cybersecurity solutions that address both compliance and advanced threat mitigation, giving companies that can seamlessly integrate regulatory compliance with cutting-edge security measures a competitive advantage in the dynamic landscape of autonomous mobility.

down-arrow

Growing Connectivity and the Internet of Things (IoT), Autonomous Driving and Safety-Critical Cybersecurity, Regulatory Frameworks and Compliance Requirements are the major drivers for the Global Automotive Cybersecurity Market.

profile

Srishti Verma

Business Consultant
Press Release

Automotive Cybersecurity Market to Grow with a CAGR of 5.29% Globally through to 2028

Nov, 2023

Growing Connectivity and the Internet of Things (IoT), Autonomous Driving and Safety-Critical Cybersecurity, Regulatory Frameworks and Compliance Requirements are factors driving the Global Automotiv